On strictly convex subsets in negatively curved manifolds

نویسندگان

  • Jouni Parkkonen
  • Frédéric Paulin
چکیده

In a complete simply connected Riemannian manifold X of pinched negative curvature, we give a sharp criterion for a subset C to be the ǫ-neighbourhood of some convex subset of X, in terms of the extrinsic curvatures of the boundary of C. 1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convex projective Gromov–Thurston examples

We consider Gromov–Thurston examples of negatively curved nmanifolds which do not admit metrics of constant sectional curvature. We show that for each n ≥ 4 some of the Gromov–Thurston manifolds admit strictly convex real–projective structures.

متن کامل

Free Boundary Minimal Annuli in Convex Three-manifolds

We prove the existence of free boundary minimal annuli inside suitably convex subsets of three-dimensional Riemannian manifolds with nonnegative Ricci curvature − including strictly convex domains of the Euclidean space R.

متن کامل

A Caveat on the Convergence of the Ricci Flow for Pinched Negatively Curved Manifolds

where r = ∫ Rdμ/ ∫ dμ is the average scalar curvature (R is the scalar curvature) and Ric is the Ricci curvature tensor of h. Hamilton then spectacularly illustrated the success of this method by proving, when n = 3, that if the initial Riemannian metric has strictly positive Ricci curvature it evolves through time to a positively curved Einstein metric h∞ on M . And, because n = 3, such a Riem...

متن کامل

Weighted composition operators between growth spaces on circular and strictly convex domain

Let $Omega_X$ be a bounded, circular and strictly convex domain of a Banach space $X$ and $mathcal{H}(Omega_X)$ denote the space of all holomorphic functions defined on $Omega_X$. The growth space $mathcal{A}^omega(Omega_X)$ is the space of all $finmathcal{H}(Omega_X)$ for which $$|f(x)|leqslant C omega(r_{Omega_X}(x)),quad xin Omega_X,$$ for some constant $C>0$, whenever $r_{Omega_X}$ is the M...

متن کامل

Strictly Kähler-Berwald manifolds with constant‎ ‎holomorphic sectional curvature

In this paper‎, ‎the‎ ‎authors prove that a strictly Kähler-Berwald manifold with‎ ‎nonzero constant holomorphic sectional curvature must be a‎ Kähler manifold‎. 

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011